i

i

ouidn’t it be
¥ nice to be
able to use
=+ ® dynantic text
strings ina Pascal-hke environment as we
currently are able to do in BASIC? Well,

it appears we can— plus more.

The SAIL language has had dynamic
strings for years. The original SAIL com-
piler, deveioped between 1969 and 1976
at the Stanford University Artificiai Intel-
ligence Laboratory, Stanford, Calif., runs
only on DEC-10 and DEC-20 computers.
Unfortunately, most of SAIL was written
in 36-bit dependent assembly language
and jis thus nonportable.

A portable version of SAIL, called
PSAIL, is being constructed to run in
most medium size C environments. This
article will present PSAIL in the context
of the original SAIL language.

, »of g% What is SAIL? It is a robust ALGOL-
"¢ dialect programming language with many
. useful extensions.'*? Because of its

expressivity, SAIL lends itseif to writing
large, complex application and system
programs. Its robust approach to type
coercion makes it closer o a D.W.I.M (Do
What [Mean) algorithmic language than
other popular; block structured, strong
type-checking languages such as Pascal,
Modula-2 or Ada. On the other hand, C—
which has looser type checking —does not
have encugh type cocrcion capability,
especially in forcing arguments to the
types expected in procedure calls. With-
out a lintlike syntax checker. writing
large modular programs can be difficuit.

.-

COMPUTER LANGUAGE B AUGUSTI985 Vfpf 2 #3

By Peter F. l.emkm

Although not an ideal D.W.1.M. lan-
guage by any means, SAIL comes closer
to this approach than the other common -
block-structured languages mentioned. Of
course, the price of more type coercion is
that you can hang yourself more often.*
Our experience, however, is that you
learn to live with occasional pitfails and
take advantage of D.W.1.M. most of
the time for greater overail productivity.
Repeatedly SAIL has been selected in the
Nationai Instituze of Health DECsystem-
10 community as the impiementation lan-
guage of choice for large, complex
systems.

Language overview
SAIL can be easily partitioned into
several independent language subsets,
This reduces what a new user has to learn
to start programming quickly. These
include: dynamic strings, dyzamic
arrays, dynamic records, macro expan-
sion, conditional compilation, code
inserted from other files, separate com-
pilation of moduies, bit manipuiation, if
and case statements and expressions, flex-
ible 1/0, powerful string scanning and
conversion functions, LEAP (an associa-
tive data structure facility which inciudes
dynamic data entities cailed items,
datums, sets, lists. associations as well as
associative search constructs —more on
this later),' 2 processes. contexts, inter-
rupts, in-line assembly language, etc.
Note that complete exclusion of some
of these sublanguages or teatures is easily
achieved in actual programming practice.
The most often used remainder is the core
subset of SAIL. which captures its para-
digm. This is relatively small —an the
order of Pascal. For example, the PSAIL

source code itself, written in SAIL, uses
no records, LEAP, embedded assembly
language, interrupts, processes, or con-
text language constructs.

Table 1 illustrates some of the janguage
elements with examples of SAIL. frag-
ments. Obviously, a much longer list
wouid be required to illustrate the full lan-
guage described in the SAIL reference
manual.' In the examples, keywords
appear in uppercase and user-defined
symbols in lowercase. However, SAIL
does not make alphabetic case distinctions
as C does.

The PSAIL compiler project began as a
resuit of the announced demise of the
36-bit/word DEC-10 and the increasing
popularity of smail UNIX systems. { had
written a large data analysis system in”
SAIL called GELLAB,** which involved
image processing and data base analysis

- for two-dimensional electrophoretic gels.

To export this system, as well as other
SAIL programs, the SAIL source code
needed to be translated to some other
language.

PSAIL was derived from an early pro-
gram catled SAITOC, written to translate
GELLAB w0 C. Later, the goal of PSAIL
was changed from that of a transiator per-
forming a partial translation to a full com-
piler capabie of:
® Handling any SAIL program and flag-
ging illegal SAIL syntax, unimpiemented
SAIL language elements, and C por-
tability problems

, Dynumu: sinngslﬂs.;‘ﬁng concutenatlon,
e "exphr.lt strlng
&L

Ry -S4 LT

.~ STRING s, 31 ‘sz- INTEGER i, '., k
2] -—“"Adum"' s2-- "Eva’’; 'w‘e
g i & -@?‘ﬂ ks»

"I.OP{s} COMMENT extract Vst char of s 5, shoﬂen s
3851 for 10] & “ AND " &s2[k foril;
YECVD("3.1 & 14159"); STECVS(j+2* *K); - 3k
The value of kis * & CVS{k) & * decimal and’’ &
cvosuq & “ octal”; B3z

" DEFINE # = "COMMENT * ", COMMENT# is shoriforCOMMENT o
DEFINE dbug(x) = “PRINT{"*x="" x_ CR,LF}" _ e

iFC(tople 10 AND aFiles<15) . oo on 7
' THENC...ELSEC LENDC - -

3. Dynamlc n- dimenslonal arrays with ragged (l e.>0or<0 boundsj

REAL ARRAY abe[- 10:10], xyz[p:ql;
STRING ARRAY xyzzy[500:1000, ~7:25,~ 10:=5];

AA Opilonol dynamnc orruy bounds checking whlch may be toggled om’off

SAFE REAL ARRAY x[] 10] : .
NOWIUNSAFE x; ... # No bounds checkmg on ‘x’; e s ;
NOWISAFE X; # Resume bounds :hecklng on’x’; - S RN ;

5 Nesfab!evunab!e declaraf:ons mslde of LABELED blocks. Note redefmmon of x und
"y and that QUOTED block labels must match. .

BOOLEAN z;
DO BEGIN “block one’’
INTEGER x, y;
et BEGIN “block two"
"ft%@}mREAlx,y; .-. o5
2 Compute z .
END “block two'
END “block cne™”

UNTIL z;

6. Type coercions uutomuncuily generated where they are least likely to cavse trouble.
{Some Pascal supporters might disagree with thisl)

STRING s; INTEGER i;
ir=s; si=i+ YA

IFs ="Q"THEN...

7. Separate compilation with INTERNAL/EXTERNAL starage modifiers and REQUIRED
saurce code file modules with optionel VERSION checking.

Table 1. (Continued on following page)

40 COMPUTERLANGUAGE B AUGUST 1985

8 Compiling itself so that PSAIL would
be portable and programs could continue
to be developed in a2 SAIL environment

" @ Running on a wide variety of systems.

Atthe NIH, we have had FORTRAN,
ALGOL-60, and SAIL available. Over
the past decade, a large body of SAIL
code (greater than 200,000 lines) was
written for some very large systems
(GELLAB, about 70K lines, MLAB,’
over 25K lines, and MATEXT,® over 35K
lines). Other SAIL programs include
BRIGHT, PUB, and the original TEX.
Like C, SAIL supports modularity but
with most of the type-checking capability
of Pascal and similar languages. SAIL has
often been used to build quickly large,
reliable systems.

Studies have shown that the majority of
algorithmic code, especially code
invoiving numericat routines® and sal-
vaging user libraries, could benefit from 2
high-level language translation rather than
rewriting the code from scratch in a target
language. It is then possablc to transiate
verbatim much of the existing SAIL code
to C using PSAIL in those cases where
36-bit dependencies are not a problem.

Using a high-level language translator
preprocessor with a target system com-
piler causes some additional overhead.
The arguments made for the FORTRAN
preprocessor RATFOR (added portability,
added language functionality, and user
productivity) also hold for PSAIL since a
SAIL environment is superior o C for
program development,

By modularizing large SAIL programs
into small files that are separately com-
piled, the additional transfation cycle time
should not be excessive. W, Teitelman'®
suggests that short compilation times are
conducive to rapid interactive develop-
ment. PSAIL should be fast enough to
minimize this time. It will continue to
1mpr0\e as processor speeds and memory
size increase.

Selecting C

To achieve portability over a wide varicty
of target computer systems, a portable -
target language is required, By writing &
machine-independent, rua-time library in
the same target language, using machine-
conditional, high-level language code
where required, the feasibility of por-
tability is greatiy enhanced.

Assembly language was ruled out
because it is not portable. It was decided
to use a high-level language as the targer
language; thus the compiler is more a
transiator or transtiterator between high-
level languages than a conventional com-
piler which generates assembly language
or machine code.

A number of popular languages,
including C, Pascal, Ada, Modula-2, and
MESA, were cvaiuated for their ability to
express high- and low-level structures
available in SAIL. A. Feuer and N.G.
Gehani'' give a valuable comparison of
Ada, C, and Pascal, exposing their
strengths and weaknesses, A further con-
straint we imposed was that the language
should be commonly available and consis-
tently implemented. C was selected as
coming closest to meeting most of these
goals.

Others have also selected C as a target
language for translators, Recently there
have been 2 number of high-level lan-
guage transiators including: S-TRAN for
BASIC-to-C, a Pascal-to-C by J. Pster-
son, and FORTRIX for FORTRAN-to-C.
Another advantage of a C high-level lan-
guage translator is that the target code is

just C code. Generated code can be used
with the PSAIL run-time library or
merged with other C programs, which are
becoming increasing available.

PSAIL is based on the published fan-
guage standards for SAIL' and for C.*
Brian Kernighan and Dennis Ritchie's The
C Programming Language is developing
into the ANSI X3J11 standard.'* There
are several advantages in trying to stay
within the existing language standards.
Both have been weli documented by these
existing reference manuals,

Adhering to the standards helps ensure
portability of much existing SAIL code
and target C code. However, a price for
standardization is not being able to polish
some of the rough edges of SAIL with
more modern tanguage forms. A PSAIL
language extension facility lets us option-
ally do this to some degree, giving us the
best of both worlds.

Sublanguages

In general, adding additional language
facilities missing from Pascal and C to an
abstract, block-strucrured language
increases the compiexity of the language.
It is generaily understood that one price of

INTERNAL INTEGER p, d, q; #indefining module;
EXTERNALINTEGER p,d,q; #in other modules;

EXTERNAL STRING PROCEDURE match(REFERENCE STRING);
REQUIRE ""bocbah.sqi’” SOURCEIFILE;

REQUIRE 48,55 VERSION;

8. Records, checked record classes and record garbage ceilection.
RECORDICLASS spot (REAL angle, rad;
INTEGER area, xMom, yMom;
RECORDIPOINTER (spot) next;

)
RECORDIPOINTER {spot) rp1;
spot:xMom{rp1] : = spot:radfrp1] *COS(spot:angle(rp1]);

9. Mere natural Boolean relations as well as assignmant embeddings.

STRING 5; INTEGER ch;
s := “"This siring has 28 characters.”’;
WHILE s NEQ NULL DO
IF("70" LEQ (ch: = LOP(s)) LEQ “9*) OR
{ch= *."}) DO QUTSTR(ch);
IF “Z" LEQ ch LEQ “A” THEN ch : = ch~"A" 4 "a";

10. String seanning facility comparable to C's scanf() and scans().
11. Arrays which are dynamically defined and active in local blocks.

Fori:= 1 STEP TOUNTIL 101 DO
BEGIN “Parform dynamic array aliocation’”
REAL ARRAY vectorA[0:i], matrixB{0:2*i,0:i];
. . . process the arrays . , ,
END "Perform dynamic array allocation’;

12. Additionai contral statements: NEXT < lobei>, DONE <labal>,
CONTINUE <label> where <label> is optional.

DQ BEGIN “outer loop of nonsense code”’
INTEGER x; REAL y, z;
FORx:w O STEP 1 UNTIL511 DO
BEGIN “Loop x’*
FORy := 25 STEP - (x+0.141)} WHILE x Leq 3001) DO
BEGIN “Loop y”"
IF {z: = x+y) = 123 THEN CONTINUE ""Loop x"*;
IF (2:mx = y) = 1234 THEN DONE “Loop x"';
IF{z:mz+y) =321 THEN NEXT
ELSE NEXT “Loop x*';
END “Lecp y*/;

END “Loop x**;

END “outer loop of nonsense code’*
UNTILz<3.14;

Tabie 1. (Continued from prrceding page)

41

increasing the power of a language by
extending its vocabulary and semantics is
to increase the complexity perceived by
the listener or writer in understanding and

using the Janguage. Computing history -

has shown that many programmers avoid
the excessive complexity and size of lan-
guages such as PL/T and ALGOL-68,
Even new ianguages such as Ada and
MESA suffer from similar problems.

In addition, complex programming lan-
guage solutions are more difficult to con-
struct and port to other systems. I would

" suggest that it is this cost of portability

that is partly responsible for the demise of
these large languages’ popularity.
So what can we do to get expressive

" power in a language at minimum cost? I

suggest breaking the language into natural
sublanguages so that programmers can
use as much of the language as they want
{or need)—and require the compiler
enforce these language partitions.

We are experimenting in PSAIL with
the hypothesis that a reduction in apparent
language size is achieved by partitioning a
large language into smaller disjoint sub-
languages enforced by the compiler and
held together by other connecting sub-
languages. This should be reflected in

~ reducing apparent complexity as observed

by the user and wouid seem especially
useful if some exotic aspects of the lan-
guage are only needed in one or two
modules.

Programmers normaliy think about
their programming environment in terms
of a2 language subset. A compiler should

. be able to enforce this thinking by having

the programmer declare sublanguages

either to exist or other sublanguages to be

exciuded. PSAIL currently contains the

following four sublanguages and can han-

dle more defined by the user:

% L0 = ALGOL-60 subset, strings,
macros, ete.

® L1 = LEAP associative structure
language

B [2 = Processes events and interrupts

B [3 = PSAIL cuensions

8 L4 = Userdefinable

As a consequence of language
partitioning:
8 [ess expertenced users can work with 2

82 COMPUTER LANGUAGE B AUGUST 1985

' reduced language, which is easier to

" - W Sophisticated users can expand the lan-
guageto :.ake advantage of advanced
‘ features. - --_;_-‘-.-_-- Sl Dodd U
‘W The PSAIL L3 extensionscanbe =~
. added. These currently include: generic
procedures, array slices, the C + +, »+,

<opr> = operators, and cmbedded C
code. :
R Programmcrs may supply their own

" dynamic extensions to PSAIL (through

PSAIL!FORGET and PSAIL!DEFINE
compiler directives to modify the com-
piler by adding new keywords using exist-
ing parser capability as well as associating
new run-time procedures). These exten-
sions can become availabie to other users
by specifying the new language definition
in a REQUIRE file module. Some possi-
ble extensions might be to impiement a
concurrent LISP or add relational data
base language extensions.

Portability

By assuming 2 consistent standard C envi-
ronment such as ANSI X3J11, another
hurdle to portability is overcome as target
language code generators are easier to
write. By divorcing the code generated by
PSAIL from the much more machine- and
operating system-dependent run-time
library, we greatly facilitate the ease of
porting SAIL source code between sys-
temns. The PSAIL run-time library con-
sists of a number of #include type .h
header files for C code files <sairun.c>,
<pmath.c>, <gcrun.c>, o
<leaprun.c> and < procesrun.c>,

A potential disadvantage of this
approach is that some run times could cal}
< stdio > —effectively doing double
interpretation. To avoid this, PSAIL run-
time packages do their own file buffering
and string handling rather than calling
<stdio.c > repeatedly where major bot-
tlenecks would appear.

These run-time libraries are also writ-
ten in the same portable dialect of C that
PSAIL generates. They use conditional C
code, which is machine dependent oniy
when required to handle machine-specific
problems, whereas PSAIL generated code
is compictely machine independent. This
method has been used for years in writing
partable C code for different UNIX envi-

ronments. One needs to compile the
/

* eration to a higher leval than basic C.. **"
" code. For instance, whether the target - -
.System has a 32- or 16-bitintegerisnot ' -,
" important since PSAIL emits all integers
i astype INTEGER, This in turn will be

_ typedef rnHNTEGER 1* for 32- baf

PSAIL run-time library only once after

adjusting the <config.h> file to thc spe- .

cific system being ported. -
PSAIL abstracts some of the code gen- -

-defined differently in the only machine-
specific file < config.h> for the two
classes of rnachmes, for example.

word inf "l - y

of:

typedefiong INTEGER; /* for 16-bit
word int */

Strings are another instance of this

_abstraction. PSAIL uses the C string

pointer strategy to facilitate use of PSAIL -
strings with other C packages. The
STRING declaration uses the C rypedefof:

typedef Eher *STRING;

Using a compacting string garbage col-
lector, PSAIL keeps track of all active
string pointers using a run-time string
pointer stack. Garbage collection is per-
formed when the string allogator run-time
salloc(} runs out of space. For example,
salloc() is cailed from the concatenation
run-time procedure catlist() when it needs
space the size of the strings to be
concatenated, Strings may be as large as
the memory available from the system.
Another very useful SAIL feature is
dynamically allocated arrays, which may
have nonzero or negative lower bounds
(sometimes called ragged arrays) and
optional bounds checking.

The SAIL subset used in PSAIL was
derived using severai constraints. By
testricting the language of PSAIL toa
useful subset of full SAIL constrained by
several factors, the resulting PSAIL lan-
guage is a relatively robust portable lan-
guage. These constraints include:

® A few subsets of the full SAIL specifi-
cation are omitted at this time from
PSAIL as few SAIL users in our program-
ming community use them— for example.
contexts. Although LEAP is translated,
run-time code will not be written for L !
(or L2} in the first release of PSAIL. The
open library scheme permits PSAIL users
to redefine or write these initially missing
run times in C.

8 Features that are difficult to map to C
or expensive to implement in terms of
run-time efficiency are not currently
implemented —for example, contexts.
Similarly, PSAIL does not currently sup-
port nested procedures or giobal GOTOs,
although code with warnings is produced.
8 Features that take advantage of the
DECsystem-10 specific instruction set but
are not efficiently simulated on different
architectures (for example, variabie byte
size operators for 36-bit words) are not
currently impiemented.

® There are aiso subtle data structure dif-
ference issues. In all of these cases, warn-
ing errors or comments are issued for the
programmer. PSAILs ““warning™ and
**trash graphics™™ comments are used to
catch these types of problems. For exam-
ple, as the DECsystem-1Q has a 36-bit
word size, 36-bit arithmetic operations
are aiso checked and when found,
reported using *'trash graphics.”

PSAIL, a language translator as well as
compiler, uses the philosophy of optional
embedded C-style warning messages to
warn about possibly illegal constructs. A
summary appears at the end of com-
pilation. Warnings are given both for
SAIL source code syntax errors and target
C code that would be nonportable due to
limitations of C or in computation (for
example, 36-bit operations). Program-
mers should use these warnings ro edit
their SAIL source code and try again.
These forms include:

8 “*Trash graphics™ are used to warn of
possible problems. There is a continuum
of warning levels to let you pick the mes-
sage level you are comfortable 1o work
with (Figure 1).

® Embedded warning C-style comments
>f the form:

"WARNING™/ = check manually for
possible semantic or
syntax problem

*UN DF'I = Undefined symbol

/*N.P.*/ = Nonportable -

{*N.L*f = Notimplemented

/*LEAP*/ = LEAP sublanguage syntax

¥ Fatal SAIL syntax error messages that
indicate what is wrong with the code, sug-
gest what should be fixed (if it can figure
it out), and point to the actuai illegat SAIL
source code.

& C portability tests are built into PSAIL.
For example, you can optionally test for
identifier name uniqueness ton
characters. The proposed ANSI X3J11
standard has six-character external sym-
bols, but other systems may have different
lengths.

Although both SAIL and C are block-
structured languages, simple one-to-one
translation from SAIL to C is not always
possible. For example, the following
SAIL and C fragments are similar but not
asimple !:! mapping:

SALL: Fori:={a+b) Step -c Until d Do
< SAll statement>;

Cifor(i={a+b);i> =d;i-=c) <C
statement > ;

Therefore we perform simple trans-
lation where possible and eisewhere do
recursive descent parsing and generate the
nonlinear mappings where required. In

some cases, where it is impractical to gen-
erate in-line C code, run-time procedure
calls are generated instead.

By abstracting the target language,
more attention can be paid to local opti-
mization, taking advantage of the consis-
tency of the target language and of C's
power as a high-ievel assembler language.
For exampie, the SAIL fragments:

INTEGER ARRAY a[1:10,1:20,1:30];-
INTEGER b;
STRHQGSI;

ali.j.k] : = afi,i,k] + b;
{s1{k For1] = Q"))

are optimized to:

(ﬂﬂﬁMH+ b;
*No dynamlc arrays, C-style */
(b) qAry(&a Li.k,3) + = b;
/* Dynamic arrays, no bounds
check */
{¢} "aChk{&a,i,i,k,3) + = b;
/* Dynamic arrays, bounds check™/

(d) ("(s] +k-1) == 'QY")

rather than the unoptimized C code.
which includes redundant calcuiations and
higher overhead with a run-time call:

SRy
/** y /
%<5 N A */
/e JA— */
’* — - %
/* . o o | */
/% S */
~ ., v */

O + + S
/* BEWARE! x/
JERkEk L *x/

/* WARNING! SHIFT OF > 31-BITS IS NOT PORTABLE */

ar

/* WARNING! [OGICAL OPERATION > 31-BITS IS NOT PORTABLE */
s

Figure 1.

43

o e e,

2T s e

e o L
SAII. Ianguuge feature

"‘:- e R
Condmcnal macro expre

: B e L ETY PRI)
ZAFORC, WHILEC
[ISR A I S A 15
EQUIRE ile sta
P AR DR Lok CIRCHE Mool TL T

LGOL 60-I|ke declaranons
Dec!aranon type checkmg

e R R e) Pt
uiornuhc type coercton .
i . -vu-‘-_l':_lﬁ:r-\l‘
Neﬂed procedure dec!nmhons E

- 7 Nested variable declarations i

-Dynamic arrays

“~ Positive ragged arrays

. Yas, currently only for dyncm'uc arruy

" Negative ragged arrays
P it

Safe array bounds checking B " Yes, C arrays, aAds() for dynamic
ALGOL-60-like control statemenls : Yes . .
Strmg concutenahon ' SN T ':‘-4. ’ Yes, adbldc==> catlist(c b C,O]

String operators

'_ Yes, LOP,sub-strings, EQU() elc.
Yes, MAX, MIN, ABS, efc. .7
=" pprintt]..

InF:x to preftx operutors 3 E}_‘, .
PRINTand OUTSTR 7=
: TOPS]O |/O run hme b
TOPSZOITENEX 1/ tun nme" |
In-line ussemb[y cude
RECORDS
LEAP sublanguage
= ‘P'R‘OCESSES EVENTS lNTEREl;l‘PTS
“DEC-10 byte pomiers in SAIL
CONTEXTS Al sublanguage

i -Yes, maop =

- Yes, most are handled i in <sm

Yes, mapped to #asm!#endasm S
Yes, mapped to struct’s, na ralloc(} yet : - i)

Most, maps through to <ieaprun c>

'Mosf mupsthrough to <procesrun PN
Wt b Eh R =

. Yes; Map-— >procedure calls, i

Not yet

Yes, written—not debugged

< sgirun.c>
<gerun,c> Yes, written—not debugged
<pmath.¢> Yes, written—not debugged

<leaprun.c> Not yet, not written, calls generated

< procesrun.c> Not yet, not written, calls generated

STRING garbage collection Yes, < gerun.c> written—not debugged
RECORD garbage collection

Procedure profiling

Mot yet, rec_ge() will mimic str_ge{)
Yes, different from SAIL—not debugged

BAIL dynamic debugger Not yet {(maybe never ...}

36-bit dependent code Forget itl Recode your programll|

Table 2. -

(e} olilli][] = ofi][i}{k] + b;
{b} aAdr(&a, Li.k,3) =
*aAdr(&a, i,i.k,3) + b;
{c} uAdr(&a fisk3) =
*aAdr(&a,i,i,k,3) + b;
{d) (*subsr{s1,k,7) == 'Q")

The generation of these different array
access forms (a)-{c) is controlled by

- COMPILER!SWITCHES /CHECK ot /

/NOCHECK, SAFE, NOW!SAFE,
NOW!IUNSAFE compiler directives.

Status of PSAIL implementation

- Because PSAIL can handle most of SAIL

and has an extensive error and warning
facility, the compiler is relatively large—
certainly more than 64K bytes. No
attempt is being made to try and squeeze it
into today's toy computers since real
machines with lots of memory and large
disks are becoming increasingly available
(at toy machine prices). .

The first machine selected for export
will be DEC's microVAX, then 68000-,
32016-, or B0286-class machines. Any
reasonably sized machine with a decent C
compiler is a likely candidate for porting
PSAIL. It may also be possible to fit an
optimized PSAIL into the limited memory
8088-class machines.

A SAIL code validation test suite and
large number of actual working source
code programs were and are being used as
a compiler construction and debugging
tool. These programs represent radically
different styles and requirements in areas
of numerical analysis, string processing,
and data base analysis. Working program
sources are extremely useful for finding
subtle compiler bugs because, as has often
been stated, no compiler is completely
bug-free.

Table 2 lists the features currently
implemented. [t is the author’s intention
to place PSAIL in the public domain when
it is released and to make it available on
various bulletin boards and to user
groups. (Watch for a COMPUTER
LANGUAGE Users Group and Bulletin
Board Service announcement of PSAIL's
availability.) For those interested in work-
ing with this emerging, portable SAIL
environment. it should be available later

- this year. H

