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1 Introduction 

An efficient disk based data structure for rapid 
searching of quantitative two-dimensional gel databases 

Fast access of two-dimensional (2-D) gel quantitative databases is important 
for rapid searching for protein differences between sets of 2-D gels from an 
experiment. The GELLAB-I1 system organizes corresponding spots from the 
gels in the database into reference or “Rspot” sets. These Rspot numeric 
names index fixed regions in the paged composite gel database file. This is 
adequate for an existing database, but has several problems. (i) Building the 
initial database requires guessing how much disk space to pre-allocate for each 
corresponding spot (i.e. spots from different gels). If it ever runs out of pre- 
allocated space during this process, it must expand the size of each corre- 
sponding set of spots copying the old database data into the new in-place on 
the disk. (ii) When adding new gels or editing the database, if a new spot is 
created, the system may also go into this expansion mode. The time spent and 
wasted disk space can be appreciable - depending on the size of the database 
(order of 100 gel database). (iii) Because each set of corresponding spots is the 
same size, we waste space in most spot sets since they do not require the addi- 
tional space a few spot sets require which contain additional fragmented spots. 
We present a new low-level disk object-based structure and algorithm, paged 
indexed buckets (PIB), which optimizes disk space usage while having similar 
retrieval speed to the original method. 

A two-dimensional (2-D) polyacrylamide protein gel 
quantitative database for an experiment may consist of a 
large number of gels. The data is most usefully organ- 
ized as sets of corresponding spots from all of the gels 
in the database allowing corresponding spot data to be 
quickly retrieved. Such a database lends itself to asking 
questions of the form “which spots are statistically signif- 
icantly different?” When searching the database for pro- 
tein spot changes, retrieval must be reasonably fast since 
the operation will be repeated thousands of times every 
time the database is searched. It also lets us edit indivi- 
dual spot data in the database in the context of other 
gels rather than in the spot list database for a single gel. 

This paper presents an efficient object-based low-level 
disk file storage mechanism which optimizes disk access 
for a 2-D gel spot database. Another way of stating the 
problem is that a database should cluster related infor- 
mation so it can be stored and retrieved at the same 
time. We call this related information an object. The pro- 
blem then becomes one of efficiently doing database 
storage and retrieval based on objects with the provision 
that objects may grow independently. This latter condi- 
tion is what complicates the problem and led to our new 
design. We describe the problem and our proposed solu- 
tion in the context of the GELLAB-I1 2-D gel explora- 
tory analysis system [ 1-31. GELLAB-I1 quantitates gel 
images, pairs spots with respect to a reference gel and 
finally merges these paired spots into a composite gel 
database organized by corresponding reference spots 
where searches for protein differences can take place. A 
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review of other 2-D gel quantitative database organiza- 
tions is given in [2] and so will not be discussed here. 

1.1 Notation 

First let us define our notation. In GELLAB, we denote 
a set of corresponding quantitated spot data from dif- 
ferent gels as an Rspot set of spots. An Rspot set then is 
an object. An object contains a set of nodes where a 
node is a contiguous set of bytes used for packing a 
spot’s data. Spot data includes its: x, y position, inte- 
grated density, density range, area, mean background 
density, shape, etc. Figure 1 illustrates a 3-D composite 
gel database consisting of gels from all experimental 
conditions - not just gels representing particular experi- 
mental conditions. 

Each Rspot set may be further partitioned dynamically 
into a subset of gels from the different experimental 
conditions used to make up the total composite gel data- 
base. Accessing each Rspot set independently lets us ask 
statistical questions of each Rspot set - treating it as 
multiple protein concentration distributions for that 
Rspot. For example, given an Rspot set of spots, we can 
compute the sample means and variances of each of the 
experimental conditions and then use these values in 
computing the t-statistic or other statistics to determine 
differences between the experimental conditions for that 
Rspot. By having all spot data available at all times in 
the database, we are flexible in which subset of gels we 
can use and how we compute the statistics on this data. 

We should also clarify where this low-level database 
method fits into the analysis scheme. Gel database anal- 
ysis software makes requests to the low-level database 
access method for spot data. We will be discussing the 
low-level database access method - not the higher level 
spot analysis. 
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Figure 1. Illustration of a three-dimensional composite gcl dalabase 
(CGL). It consists of n gels G R ~ ~ , ,  C,, ..., C, from all experimental 
conditions - not just gels representing a particular experimental con- 
dition. A representative gel GRgei for the set of gels is selected during 
database construction and is called the Rgel. Spots which are present 
are marked with an 0 and those missing with an X. Experimental con- 
dition 1 = {GI,, G,,, . . ., GI,), experimental condition 2 = (G21, (&,. . ., 
Gzn}, etc. The set’of corresponding spots from different gels is called 
an Rspot set object. Rspots 1, 2, 3 ,  4, etc. are illustrated. Rspots sets 
which are not present in the Rgel are called eRspot sets (e.g. Kspot 
[4]). Missing spot positions are extrapolated and assigned zero density 
values. 

1.2 The problem 

When a gel database of Rspots is extended by adding 
gels or edited so spots are added, additional space may 
be needed in a particular Rspot set. There are several 
methods of organizing this type of data so new spots can 
be accommodated. We list two here. (i) The first method 
stores each spot in a separate gel spot list file, or paired 
spot list file or a superfile storing all of the paired spot 
lists. Adding a spot implies extending an individual file. 
However, this implies visiting several files or tracing 
through the pair spot lists with multiple disk seeks for 
each Rspot set access. This is not very efficient for 
processing large numbers of gels and large numbers of 
spots. (ii) The second method, used in the original GEL- 
LAB-I1 system, preallocates contiguous disk space for 
each Rspot set based on a factor 2 1.0 of the number of 
gels to be saved in the initial database. Each Rspot set 
then consists of a list of spot nodes which is kept sorted 
by a relative node pointer contained in each node. 
Keeping all gel data available for statistical calculations 
rather than computing average values for the different 
experimental conditions of gels means that the database 
can be easily repartitioned to a different subset of gels or 
subset of spots from those gels without extensive 
rebuilding of a sub-database. 

This disk allocation strategy meant that only one disk 
access was required to access the entire Rspot set. How- 
ever, if the Rspot set ever grew, all Rspot sets would 
have to be expanded to add space to any single Rspot 
set - an inefficient expansion operation as well as waste- 
ful of disk space. An Rspot set can grow if new gels are 
added to an existing database or the user manually edits 
in new spots to an Rspot set missed by the automatic 
spot finding/quantitation software. Figure 2 illustrates 
the original GELLAB-I1 database design and the pro- 
blem of expanding the database if any Rspot set grows. 

The new method we describe here gives us the flexibility 
of method (i) but with the access efficiency of (ii). We 

describe the algorithm and then give some benchmark 
comparisons between the original and the new method. 
The original GELLAB-I1 paged composite gel (PCG) 
database data access method is described in [1,2,4] and 
so will not be described here. 

2 Methods 

2.1 Overview of paged indexed bucket algorithm 

The new database method is called the paged indexed 
bucket (PIB) database. From a gel database user’s point 
of view, the PIB database consists of an indexed list of 
objects illustrated in Fig. 3. It uses a single-level primary 
index which indexes database buckets with bucket 
chaining on overflow. Korth and Silberschatz [5] have a 
nice discussion of database index methods and the use 
of buckets in database files. In our context, a bucket is a 
contiguous region of memory (whether on the disk or in 
memory) which holds one or more nodes of data. Then, 
each Rspot object consists of a set of spot nodes ac- 
cessed as a contiguous array belonging to that object. 
This is illustrated in Figs. 4.a and b. 

In the PIB design, there are two types of buckets: pri- 
mary and secondary. Fixed size nodes are allocated in 
buckets and are then manipulated by the gel analysis 
program using this database. The gel database program 
can sometimes optimize the 110 rates by requesting that 
the primary bucket size be exactly that required for each 
object so that multiple disk accesses are not required. If 
additional nodes are ever needed to be added beyond 
the capacity of a primary bucket, then additional sec- 
ondary buckets are added to the end of the disk file as 
overflow secondary data buckets. Secondary buckets of 
an object are not contiguous on the disk but are conti- 
guous in the object cache in memory. If there are few 
overflows, then additional overhead would be low. 

As illustrated in Fig. 3, an object set of nodes is kept in a 
singly linked list of buckets in a .pib node data file. The 

a) Before added X gels b) Expanded database after added K ge ls  

Rspot 111 

Rspot 121 

Rspot [ll 

Rspot C21 

. . .  

Rspot “1 . . .  

Figure 2. Structure of the original GELLAB-I1 PCG database where 
all Rspot sets are the same size (a) database of M gels containing M 
spot nodes/Rspot set; (b) expanded database after adding K more gels 
or if any particular Rspot [r] was increased to M + K spots. Note that 
the database is contiguous on the disk and that each Rspot set is the 
same size. This makes object access from the disk a simple one-step 
operation. 
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object index pointing to primary buckets is saved in a 
.idx file and is kept in memory during PIE operation. 
The spot node data is itself saved in a .pib data file and 
is cached to memory as needed. The caching mechanism 
is flexible so that a single cache or multiple caches can 
be used. On gel database program startup, the entire 
object index is read into and kept in memory during 
processing. This means that we can quickly look up the 
disk addresses of the primary buckets for all objects. This 
object index is the primary index and there is no sec- 
ondary index. Rather, overflow or secondary buckets of 
an object are chained together in the .pib file itself. So 
the only way to access a secondary bucket is to have 
read the previous bucket which points to it. 

Object-index: EODE data file: 
<dbfile>.idx file 
[in memory1 [on disk1 

<dbf i l e >  .pib file 

Object s-DD Bode-DD 

2.2 The initial primary and secondary buckets 

Initially, when a new object is created, we create a pri- 
mary bucket (of size N,,jwith a NlJLL secondary bucket 
pointer (and secondary bucket size Nsb of Oj. That is, the 
first Npb nodes will be put into the primary bucket. If the 
initial number of primary nodes is known, the primary 
bucket can be created with this number of nodes - the 
optimal allocation. So no secondary buckets are 
required. (In GELLAB-11, we estimate the number of 
nodes in a primary Rspot object as the number of gels in 
the database). When an object is accessed, all of the 
node buckets for that object are read into and assembled 
into one of the PIB node caches. As the database is 

(Data Dictionaries) 

I 
buffer or EULL 

node 1 

node Epb 

secondary 

node Psb 

next secondary bucket 
etc. or BULL 

cachePt r 

node Ipb J 
buffer or BULL 

node Esb 
node Psb 

etc. or EULL 

buffer or HULL 

. . .  

node 1 

node Ipb 

node Nab 

next secondary bucket 
etc. or EULL 

Figure 3. Schematic of  PIB data struc- 
tures. Each composite Rspot set object 
02 has a 3-tuple (N,,, secseekptr, 
cachePtr). Npb is the number of nodes in 
the primary bucket. The secSerkPtr is the 
pointer to the start of the primary 
bucket on the disk and cucheptr is the 
cache pointer if the object is in the 
cache. 
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being constructed, new bucket descriptors are added to 
the object cache as required. When the object in the 
cache is written back to the disk, each bucket region of 
the cache is written out separately - to a different part of 
the disk. At the end of each disk bucket, a two-word link 
(NSb, secSrekPtr) is also written to the next secondary 
bucket if it exists (illustrated in Fig. 3). Note that while 
the secondary buckets for an object are scattered over 
the disk, all node data in the object cache is contiguous 
in the cache node buffer. Together, these links specify 
the complete node data for each object set. 

Normally, to access any node in an object set, all of the 
nodes must be read into the object cache. The cache 
holds only one object. Therefore, the size of the cache 
must be at least the size of the largest object and grows 
dynamically as required. When the nodes are scattered 
in several buckets, this can be more time-consuming 
since all buckets have to be read to access the entire 
object set of nodes and the disks seeked separately to 
each bucket. Although we do not operate the PIB this 
way, we could optionally limit access to just the primary 

Rspot [j 1 data 

a) F=l Spot node 2 

H Spot node n 

bucket if we can ensure that the data we want resides 
there. This would then allow us to do object caching in 
one disk access - but at the cost of not retrieving the 
entire object. The PIB algorithm can work with multiple 
object caches. If memory is in short supply, it can fall 
back to one cache and free the memory used in the 
other caches. 

Adding more nodes than the current object cache cap- 
acity causes a new secondary bucket to be created in the 
cache and the cache buffer to be regrown. We generally 
set a secondary bucket size large enough to hold several 
nodes. This prevents too much disk fragmentation if we 
expect more than one additional node per object set. 

The cache maintains a “dirty cache” flag which is checked 
when either: (i) a new object is to be read into the 
cache; or (ii) the database is to be checkpointed or 
exited. If the flag is set, then the object is flushed back 
out to the disk file. The dirty flag is set if the data in the 
cached object changes since it was last read or is being 
created. 

Rspot ob j ect  cache bwlf er of contiguous data 

b) 
Primary bucket data 

1st  secondary bucket data 

kth secondary bucket data 

<future buckets> 

Figure 4. Structure of the contiguous Rspot list of spot nodes for some Rspotj. Each node is Nnode words long (16 in GELLAB-I1 packing over 30 
spot features). This list occupies a contiguous memory space. The nodes are sorted within this space by the gel database program using a next- 
node index in each node relative to this space. (a) Illustrates the abstract Rspot structure for n nodes. (b) Illustrates how the contiguous Rspot 
object n node cache buffer is broken up into k bucket data regions ( k  < n) which are then gather-scattered in read/write disk operations of the 
PIB node file. 
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2.3 Deleting a node 

Deleting a node from an object is up to the gel database 
program which uses the nodes in the object as it wants. 
No semantics are imposed on the contents of a node 
except that the first word of each node is non-zero if 
that node is active data. We use the convention that the 
word is zero if the node is inactive or deleted. In GEL- 
LAB-11, deleted Rspot nodes are removed from the gel 
database linked list of nodes. However, the deleted node 
is still in the object bucket (and cache). The PIB sub- 
system zeros the data in the node when told to delete a 
node. 

A deleted node can be recycled as a new node index 
when the low-level PIB database gets a request for a 
new node. We only need to check the first word of each 
node to find a free one (i.e. previously deleted) if it 
exists. So the gel database node usage adopts this 
zeroed-node convention. If no deleted node is found, we 
create a new node at the end of the cache buffer (adding 
a bucket if required to make more node space). Deleted 
objects are not reused in the PI& file. However, when a 
PIB database is coalesced (to be discussed) the object 
space is freed. Once a cache buffer and its bucket-list is 
grown, it never shrinks since we keep reusing the cache 
for caching other objects. This is more cost effective than 
constantly allocating-deallocating the cache. 

Object and node low-level PIB access functions do not 
create objects and nodes if they do not already exist so 
they must be explicitly created with other low-level PIB 
functions. 

2.4 PIB database handle 

Opening the PIB database creates a new database handle 
- a record of all pertinent information for that database. 
Multiple databases can coexist in the same gel database 
program - with different size nodes and buckets, etc. 
and may be optimized differently for different purposes. 

2.5 Multiple databases 

Because the PIB database handle is allocated dynami- 
cally, multiple copies can be created. Multiple database 
handles are necessary for doing operations such as coa- 
lescing a PIB database or in changing the size of a node 
by copying and expanding/contracting nodes in the new 
copy. The latter can be useful, for example, if the defini- 
tion of a node is changed by adding additional spot fea- 
tures (and increasing the size of a node). Then the data- 
base can be copied to the new format. This is especially 
important if we have a large amount of time invested in 
editing an old database and do not want to have to redo 
the editing just because we went to a new format. 

2.6 PIB database files 

There are three required PIB database files: the .idx (pri- 
mary index file) and the .pib (node database), and the 
.mem (a separate memo database file which is not dis- 

cussed here). The .idx file must be read first in order to 
access primary object buckets in the .pib file. The memo 
database contains optional ASCII string data associated 
with each object and has a similar dynamic allocation/ 
coalesce mechanism. (We actually are specifying the file 
extensions here - each database has a basename. For 
example for a basename fas, the three files would be: 
fas.idx, fas.pib and fas.mem.) Each object can have an 
optional arbitrarily large memo string associated with it. 
The memo string is identified by a non-zero memo 
number. In addition, objects can share the same memo 
string by having the same memo number. These strings 
are kept in a common .mem database file but their object 
memo number index is part of the.idx database file. If a 
memo is deleted from any object, the memo number is 
deleted from all other objects which shared it. Further- 
more, the string space is lost in the .mem memo string 
file until it is compressed away with a coalesce operation. 

2.7 Coalescing PIB database 

After the database is constructed, it may be optimized, 
i.e. coalesced, by being copied into another database file. 
Multiple buckets for each object in the initial database 
are coalesced into single primary buckets for those 
objects of size Np,, ( r )  ( I  being the lobjectset I and Npb ( r )  
is part of the primary index). Since multiple databases 
may reside in the same program, the secondary buckets 
can be periodically optimized away using a coalesce oper- 
ation. When coalescing a database, we read in the pri- 
mary and secondary records for each Rspot set from the 
old database and then write each Rspot set out as a 
larger primary bucket in the new database with no sec- 
ondary buckets. 

2.8 Dynamic caches 

Although the PIB algorithm can be implemented with a 
single object cache, we do allow a dynamic number of 
object caches to be used. This can be useful if lhere is a 
need to simultaneously keep multiple objects in memory 
and there is enough memory to support multiple caches. 
An example of this would be when several objects need 
to be repeatedly accessed such as with some clustering 
algorithms. By caching all of the objects being clustered, 
we help avoid disk thrashing. In this case, the gel data- 
base program just accesses the objects using a different 
low-level function call which puts each object into a sep- 
arate cache. Finally, it notifies the PIB low-level database 
manager when it is done with these objects so they can 
all be flushed and the cache buffer space freed. 

2.9 Byte-order and database portability 

Because byte order of binary data can cause problems 
with portability when reading data with computers with 
different byte order, we enforce a standard byte order on 
all binary data. We use the big-endian (Sparc and XDN 
standard architecture) as the default byte order. The PIB 
110 subsystem automatically translates big-endian to 
little-endian leg. Intel to Sparc computer architectures) 
as required for the .idx data on a little-endian system. 
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The PIB node data byte order can be handled either by 
the gel database program or optimally by calling other 
PIB access functions. 

2.10 PIB data structures 

In order to clarify the relationships between the different 
PIB database classes: objects, buckets, cache and nodes, 
we now examine parts of the PIB data structures. Table 
1 shows key parts of the C language declarations for data 
structures used in implementing the Paged Indexed 
Bucket algorithm. Each database is referenced by a dyna- 
mically allocated handle structure pibDB-t. The pibDBA 
structure is composed of the PIB index, cache(s) and a 
list of objects. A cache maintains a bucket list as well as 
buffer space for node data. The low-level database func- 

tions manipulate these structures within pibDB-t. Six 
main structure types are used in this database handle 
composition. 

asciiDD-t Ascii data dictionary class 
bucket-t Cache class for storing an Object's node bucket 

cache-t Cache class for storing an Object's node data (in 

pibobject-t Object index entry class 
pibIndex_t Primary index limits class for the Node data 

pibDB-t Paged Indexed Bucket node database handle 

data class 

memory) class 

base class 

class 

The pibIndex-t class defines the .idx index file and index 
sizes. Figure 5 illustrates the structure of the index file. 

Table 1. Key data structures of PIB algorithma' 

typedef s t r u c t  --ASCIIDD-- 
{/* Ascii d a t a  d i c t iona ry  c l a s s  */ 

char  *fieldlames ; /* names of each f i e l d .  Spec ia l  names a re :  
"$BODD" , "nKeys=" , itoa(nKeys) * 
"$EODD", ' I " ,  11.1 

*/ 
/* type of  each f i e l d  "BYTE", "long" e t c .  */ 
/* value of  each f i e l d  */ 

char  *fieldType; 
char  *f ieldValue ; 

> asciiDD-t; 

typedef s t r u c t  --BUCKET-- 
{ /*  Cache c l a s s  f o r  s t o r i n g  an Objec t ' s  node bucket da t a  */ 
long 

fseekBucket;  
nlodesInBucket, 
b 0 f f s e t ;  

/* (BYTE *) d i s k  bucket po in t e r ,  -1 is undefined */ 
/ *  list of bucket s i z e s  ( i n  nodes) of a bucket */ 
/* BYTE o f f s e t s  of bucket f r o m  s t a r t  of buf*/ 

> bucket - t ;  

typedef s t r u c t  --CACHE-- 

unsigned long  

bucket-t 

long  

{/* Cache c l a s s  f o r  s t o r i n g  an Objec t ' s  node d a t a  i n  memory. */ 

*buffer  ; / *  po in te r  t o  memory cache bu f fe r  i f  ! m L * /  

*bucketLis t ;  /* list of [l:nBucketsUsed] buckets */ 

b u f f e r s i z e ,  /* t o t a l  s i z e  ( i n  BYTES) of cache */ 
o b j e c t f b r ,  
maxlodesdllocated. 
maxBucketsAlloc, 
nBucketsUsed, 
dirtyCacheFlag; 

/* objec t  nbr assoc ia ted  with cache */ 
/* across  a l l  buckets i n  cache */ 
/* Ir buckets a l loca t ed  in  cache */ 
/* Ir of buckets used i n  t h i s  Object */ 
/* s e t  i f  cache en t ry  i s  d i r t y  and needs t o  be f lushed  */ 

. . .  
) cache- t ;  

typedef s t r u c t  --PIBOBJECT-- 
{/* Object index en t ry  c l a s s  */ 

cache-t 
zcachePtr;  /* (dynamic) if !=O cache i d r  a s soc ia t ing  

caches a i t h  t h e  object */ 
/* The following d a t a  i s  wr i t t en  t o  t he  . idx  f i l e  */ 
long 

shor t  
p r iFseekPt r ;  

priBucketSize,  
nlodesllsed: /* t o t a l  Ir o f  nodes in  objec t  */ 

/* primary DSK Buckets seek p t r s* /  

/* s i z e  ( i n  BODES) o f  t he  primary bucket * /  
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BYTE 
deletedFlag; 

. . .  
} pib0bject-t; 

/* if ' * '  then OBJECT is deleted. */ 

typedef struct --PIBIBDEX-- 
I/* Primary index limits class for the Iode database */ 
asciiDD-t 

asciiDD-t 
**asciiDD; 

**nodeAsciiDD; 

/* Ascii data dictionary describing .idx file*/ 

/* [opt]. data dict. describing PIB node data */  
char 

long 
idxDBf ile CZ561; 

startOflodeAsciiDD, /* fseek start of node asciiDD in .idx */ 
st art OfBinaryDat a, /* fseek start of binary data in .idx */ 
nObjectsAllocated, /* sizeof pibDB->obj[] alloc - not what is 
nobjects, /* X of objects in the index [l:nObjectss] 
indexDirty ; /* set if ever added objects or changed */ 

/* pibDBfilet".idx" index file name */ 

. . .  
) pibIndex-t; 

typedef struct --PIBDB-- 
I/* Paged Indexed Bucket node database */ 
pibIndex-t 

pib0bject-t 

cache-t 

FILE 

char 

index ; /* 

*obj ; / *  

**cache ; /* 

*f pPib ; / *  

pibDBfileC2561, / *  
pibFileC2561; / *  

nextFreeByteInFile; / *  
lastcachelbr, / *  
maxCaches , /* 
nYordsPerEode , /* 
nBytesPerIode, /* 

1ockFileFlag; / *  

long 

nEodesPerPrirnaryBucket, /* 
nBodesPerSecondaryBucket, /* 

primary index state for node DB */ 

primary objects C1:nObjectsl index */ 

list of node cache[l:maxCaches] */ 

pibDBfilet".pib" file pointer for node 

pib Base file name path (no extension) 
pibDBf iletk" . pib" node file name */ 

next free byte to alloc in .pib file. */ 
last cache X allocated */ 
1c of caches allocated. Start at 1. */  
sizeof(node)/sizeof(long) */ 
sizeof (node) */ 
initial Pri. bucket size */ 
default size of secondary buckets */ 
lock status of . idx PIB DB file */ 

used */ 
*/ 

file */ 

* /  

a) To simplify these data structures for the paper, we have omitted some of the less important details. 
This is denoted by ". , .", The pibDB t database handle is dynamically allocated. The primary index is 
kept in memory and is read and saved from/to the .idx 

The index file is used only when the database is initially 
opened, check-pointed or closed. An ASCII data dic- 
tionary defined by asciiDD-t at the front of the .idx 
index file describes the structure of the remaining index 
file so that it is portable and can reflect changes in the 
number of objects, etc. The .pib node data file on the 
other hand is opened when the database is opened and 
remains open until the gel database closes it. When an 
Rspot object is to be accessed, the low-level database 
functions check the pibObject-t's cachePtr. If it is not 
NULL for that object then it is in the cache, otherwise 
the old contents of the cache are flushed and the new 
contents loaded from the .pib file for this object. Figure 
6 illustrates a typical organization of the .pib file as con- 
sisting of buckets allocated as they were required. The 

structure of an individual bucket is illustrated in Fig. 3 
which also shows the (Nsb, secSeekPtr) pointer to the 
successor bucket at the end of each bucket. 

3 Results 

In order to test the efficacy of the new algorithm, the 
GELLAB-I1 system was built as two different versions 
with all codes exactly the same except where it accessed 
the low-level database handler. These two versions used 
the original PCG DB method and the new PIB method. 
Then different databases were constructed and various 
operations performed. The first was a 12-gel leukemia 
database of 1124 Rspots with an average of about 800 
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Binary index-data of variables described i n  above DD 

I Binary objectC13 index data I 
. . .  

Binary objectEd index data I 
Figure 5. Structure of .idx PIB index file. The index entry for an Rspot 
object points to where the primary bucket for that object is on the 
disk, the primary bucket size and to the cache if the object is in the 
cache. The use of  ASCII data dictionaries helps make this database 
more portable. 

spotdgel and the second was a 52-gel serum database of 
2003 Rspots with an average of about 1500 spots/gel. We 
then compared file sizes, database build and search 
times. These initial benchmarks are summarized in 
Table 2. The new PIB database uses approximately half 
the disk space of the original PCG database format. 
Access times are roughly twice as long for PIB. 

Coalescing the 12-gel database .pib file did not take 
appreciable time - roughly double the time to do a 
simple search. Coalesce time for the 52-gel data base was 
also approximately double search time. This makes sense 
since the coalesce operation is just a copy operation - 
repeatedly reading an object from the old database and 
writing it to the new one. Then after coalescing the .pib 
12-gel database file, the search was slightly faster (17 
versus 22 seconds). We have also observed that most pri- 

Table 2. Comparison of original PCG and new PIB methods for representing 2-D gel quantitative data- 
basesa) 

(a) 12 gel database of 1124 Rspots with an average of about 800 spots/gel: 

Original PCG method Paged-Index-Buckets (PIB) 

DB size (nb) f 6.18(.pcg) 

DB size (ratio) 
Building DB (time) 
Sequential search 

(time) 
EXTRAPOLATE (adds 
missing spots to 
existing DB, but 
before COALESCE) 

SEARCH (time) 
(sorts existing 
database) 

COALESCE DB (time) 
SEARCH (time 1 
(After 

(b) 52 

DB size 

DB size 

1 .o 

00 : 05 COO : 041 
13 : 48 cot3 : 571 

00 : 32 100 : 311 

00 : 04 COO : 031 

~ ~ ~~ 

0.04(.idx) + 1.63(.pib) + 
1.34(8K .sdd) or 2.27(16K .sdd) 
0.48(8K .sdd) or 0.64(16K .sdd) 
15 : 38 C07 : 401 
00 : 09 COO : 081 

01:51 [00:511 

00 : 22 COO : 171 

00 : 58 COO : 181 
00 : 17 COO : 161 

COALESCE) I 

gel database of 2003 Rspots with an average of about 1500 spots/gel: 

(Hb) 

(ratio) 
Building DB (time) 
Sequential search 

(time) 
EXTRAPOLATE (adds 
missing spots to 
existing DB, but 
before COALESCE) 

SEARCH (time) 

database) 
(sorts existing 

COALESCE DB (time) 

Original PCC method Paged-Index-Buckets (PIE) 

14.92(.pcg) O.OG(.idx) + 6.81(.pib) + 

1 .o 0.61 
1 :OO: 11 CO: 57: 561 

2.26(16K .sdd) 

2 : 23 :02 c1: 30: 581 
00:18 [OO:l6] 00 : 21 coo : 201 

03:16 C03:lll 05 : 58 C04 : 421 

-- 01 : 02 COO : 581 

I -- 02:11 C00:501 

a) Rough benchmark times are represented as run-time [cpu-time] in minutes:seconds. In part (a) a 12 
gel leukemia gel database with roughly 800 spots/gel was used in these tests [Thanks to Dr. Eric 
Lester for use of this data]. In part (b) a 52 gel FAS serum gel database with roughly 1500 spotslgel 
was used in these tests [Thanks to Dr. James Myrick for use of this data]. The FAS database did not 
have any GELLAB-I1 eRspots so all gels fit into the primary bucket. The PIB versions were built to 
hold up to either 8,000 or 16,000 Rspots while the PCG version could hold up to 8,000 Rspots. 
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[object #, bucket #I 

==> Bucket node data for [l, 1 1 ,  CWsb,sscFseekPtrl j 

primary buckets . . .  

==> Bucket node data for  [n, 11, [llsb,secFseebPtrl + 
t o  secondary 
buckets 

-> Bucket node data for [l, 21, Clsb,secFseeLPtrl 

. . .  
-> Bucket node data for [n, 21, [lsb,secFseekPtrl + 

-> Bucket node data for  E l .  kll, C0,UULLl I 
-> Bucket node data for En. knl, [O,IULLI 

Figure 6. Structure of .pib PIB mode data file. Object primary buckets 
are generally clustered in the front of the file while secondary buckets 
and new primary object buckets are inserted toward the end of the 
file. Pointers from the primary index are denoted by => while sec- 
ondary pointers are denoted by ->. 

mary buckets are at the front of the .pib database file. 
This is consistent with the ways the data is assembled in 
the PIB database since the initial Rspot objects are all 
defined by spots contained in the reference gel. With the 
larger 52-gel database, the ratios of the disk space and 
database processing times were similar to those of the 
smaller database. 

done?” We would suggest that it would be most produc- 
tive just after a database was built and possibly after 
major editing. By coalescing immediately after the com- 
posite gel database is constructed, the database is opti- 
mized before doing searches or additional analysis. 
When editing, we add (and delete) spots in individual 
gels, possibly changing the size of some Rspot objects. 
Unless a massive editing effort is performed, editing will 
probably not make much difference in overall PIE data- 
base efficiency. Alternatively, by looking at the statistics 
of the average number of secondary bucketslprimary 
buckets in the cache usage, we could estimate when to 
coalesce the database and possibly even invoke it auto- 
matically. The PIB structure allows extending an indivi- 
dual object without any penalty on other objects. If more 
nodes are needed than will fit in the last current bucket 
of an object, it simply adds another bucket. So the worst 
case is that the object gets additional secondary buckets. 
If this happened to many objects and performance 
degrades, the PIB database can always be coalesced. 

4.2 ASCII data dictionaries for portability 

The index database has two ASCII data dictionaries. The 
first is for the index .idx file itself and describes its size 
and contents. This makes the database more portable as 
other programs can read and decode the index data 
structures. The second ASCII data dictionary describes 
the structure of a node used as the basic building block 
of the .pib file. This is also useful if the structure of a 
node changes with the version of the gel database soft- 
ware since it could still read an old database and remap 
the data to the format of the new node structure. 

4.3 Efficiency of PIB versus standard relational 
databases 

4 Discussion 

As expected, we see from Table 2 that the efficiency (as 
measured by access time) of the PIB database implemen- 
tation of a 2-D gel database is somewhat less than for 
the original PCG DB method. This is because of the 
existence of secondary buckets for some of the objects. 
However, the PIB database file takes less space - and 
the time trade-off is not severe. Because the ratios of 
disk space and database processing times are similar for 
the large and small databases, it would seem that the 
PIB algorithm would scale linearly. By further bench- 
marking and code optimization, we feel that the PIB per- 
formance can be optimized to nearly that of the more 
effcient GELLAB-I1 PCG algorithm. The main point, 
however, is that the performance is acceptable and we 
get the benefit of an easily extensible object database. 
Additional benchmarking should be done to get a more 
accurate estimate of the differences between the two 
methods. 

4.1 Coalesce strategies 

After expanding a PIB database, if new gels were added, 
it may be useful to coalesce it to improve efficiency. The 
question arises “at what point should coalescing be 

The B’ balanced tree database structure [5,61 is an 
optimal data structure for many types of data. It keeps 
the tree depth and seach times to a minimum. However, 
it requires at least two disk accesses and probably more 
as the number of records (Rspot nodes) exceeds the size 
of the B+-tree internal node size. Object data is therefore 
still not as optimally clustered as with the PIB method 
when coalescing is used, which can reduce object access 
to one disk access. 

4.4 Efficiency of PIB versus standard relational 
databases 

Since the PIB methodology clusters related spot node 
entities in Rspot set objects for efficient retrieval, it 
would appear to be much more efficient than if imple- 
mented using most relational databases (RDB). A 
standard RDB could store each spot node in a table 
organized by gel. Then to access all of the spots in an 
Rspot set, the RDB system must access each of the gel 
tables to get each record and then assemble them (i.e. 
“join”) in a new table. Alternatively, a table could be 
organized so a record is an Rspot set with each number 
of fields being separate gels. However, this is awkward 
since it may be expensive to extend tables to add new 
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gel spot nodes. Unused table entries would also be 
wasteful of disk space. 

However, if the RDB implements record clustering, then 
its efficiency could be optimized to be similar to that of 
PIB. By record clustering, we mean the clustering of the 
node data - not just the clustering of indices to the data. 
Index clustering still does not give the efficiency we 
require. One always wants to avoid multiple disk 
accesses for reading and writing an object which is 
clearly less efficient. Elmarsi and Navathe [6] describe a 
clustering index method with separate fixed-sized blocks 
(similar to fixed-size buckets) for each group of records 
belonging to the same cluster (i.e. object). PIB is similar 
to this concept except that PIB buckets need not be of a 
fixed size. Variable bucket size can then be used in opti- 
mizing disk usage when a PIB database is coalesced. 

The PIB object-based database design is not optimal for 
general RDB problems because there is no secondary 
index (although it could be added). However, it would 
be useful for object-based databases where objects con- 
tain related subobjects and when objects can grow arbi- 
trarily krge at any time. Hurson et al. [7] analyze dif- 
ferent problem domains of database management sys- 
tems and suggest a model for predicting which domains 
will work better with the relational model and which 
with the object-oriented model. They indicate that the 
relational model, while simple and powerful, works best 
with data where “relations must be at least in first 
normal form, which inhibits the direct representation of 
multivalued or set-valued attributes”. Although objects 
can be mapped to first normal form, they suggest that 
better performance can be achieved using object- 
buffering and object-caching - both of which are used in 
the PIB design. 

4.5 Future improvements 

The Rspot set data in an object could be reorganized for 
faster I/O. By having the gel database program physically 
reorganize the node data in the primary and secondary 

buckets so all nodes of interest are in the primary 
bucket, it would then be possible to read only the pri- 
mary bucket for that object. The high-level database pro- 
gram would then instruct the low-level PIB database 
functions to read only the primary bucket for an object. 
Yet, the full object data is available when needed using 
the standard object retrieval method. Low-level PIB 
functions exist to read/write only the primary bucket, 
but are not currently used in the GELLAB-I1 database 
code. 

It is not currently possible to read an arbitrary bucket 
from the middle of the bucket list because only the pri- 
mary bucket is accessible from the index for each object. 
Currently, all buckets in the list for an object are read 
into the cache. If a specific node were desired, the PIR 
algorithm might be extended to read only as much as it 
needs in order to reach that data. Using a secondary 
index might help, but that could add a great deal of 
memory overhead for marginal gain in an object-based 
system. Overall the PIB object-based design improves 
the overall performance of accessing 2-D gel quantitative 
data without major overhead and allows smaller compos- 
ite gel database files to be used. Although this clustering 
scheme may be available in some expensive relational 
database systems, the concept is simple enough to imple- 
ment for small systems which can not justify this cost. 
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