
Electrophoresis 1993, 14, 1341-1350 Object-based data structure quantitative databases 1341

Peter F. Lemkin’
Yecheng Wuz
Kyle Upton3

‘Image Processing Section,
LMMB/NCI/FCRDC, Frederick,
MD
’Scanalytics/CSPI, Billerica, MA
3Program Resources Inc., FCRDC,
Frederick, MD

1 Introduction

An efficient disk based data structure for rapid
searching of quantitative two-dimensional gel databases

Fast access of two-dimensional (2-D) gel quantitative databases is important
for rapid searching for protein differences between sets of 2-D gels from an
experiment. The GELLAB-I1 system organizes corresponding spots from the
gels in the database into reference or “Rspot” sets. These Rspot numeric
names index fixed regions in the paged composite gel database file. This is
adequate for an existing database, but has several problems. (i) Building the
initial database requires guessing how much disk space to pre-allocate for each
corresponding spot (i.e. spots from different gels). If it ever runs out of pre-
allocated space during this process, it must expand the size of each corre-
sponding set of spots copying the old database data into the new in-place on
the disk. (ii) When adding new gels or editing the database, if a new spot is
created, the system may also go into this expansion mode. The time spent and
wasted disk space can be appreciable - depending on the size of the database
(order of 100 gel database). (iii) Because each set of corresponding spots is the
same size, we waste space in most spot sets since they do not require the addi-
tional space a few spot sets require which contain additional fragmented spots.
We present a new low-level disk object-based structure and algorithm, paged
indexed buckets (PIB), which optimizes disk space usage while having similar
retrieval speed to the original method.

A two-dimensional (2-D) polyacrylamide protein gel
quantitative database for an experiment may consist of a
large number of gels. The data is most usefully organ-
ized as sets of corresponding spots from all of the gels
in the database allowing corresponding spot data to be
quickly retrieved. Such a database lends itself to asking
questions of the form “which spots are statistically signif-
icantly different?” When searching the database for pro-
tein spot changes, retrieval must be reasonably fast since
the operation will be repeated thousands of times every
time the database is searched. It also lets us edit indivi-
dual spot data in the database in the context of other
gels rather than in the spot list database for a single gel.

This paper presents an efficient object-based low-level
disk file storage mechanism which optimizes disk access
for a 2-D gel spot database. Another way of stating the
problem is that a database should cluster related infor-
mation so it can be stored and retrieved at the same
time. We call this related information an object. The pro-
blem then becomes one of efficiently doing database
storage and retrieval based on objects with the provision
that objects may grow independently. This latter condi-
tion is what complicates the problem and led to our new
design. We describe the problem and our proposed solu-
tion in the context of the GELLAB-I1 2-D gel explora-
tory analysis system [1-31. GELLAB-I1 quantitates gel
images, pairs spots with respect to a reference gel and
finally merges these paired spots into a composite gel
database organized by corresponding reference spots
where searches for protein differences can take place. A

Correspondence: Dr. Peter Lemkin, NCI-FCRDC, Bldg. 469 Rm. 150,
Box B, Frederick, MD 21702, USA

Abbreviations: 2-D, two-dimensional; DB, database; PCG, paged com-
posite gel; PIB, paged indexed bucket; RDB, relational database

review of other 2-D gel quantitative database organiza-
tions is given in [2] and so will not be discussed here.

1.1 Notation

First let us define our notation. In GELLAB, we denote
a set of corresponding quantitated spot data from dif-
ferent gels as an Rspot set of spots. An Rspot set then is
an object. An object contains a set of nodes where a
node is a contiguous set of bytes used for packing a
spot’s data. Spot data includes its: x, y position, inte-
grated density, density range, area, mean background
density, shape, etc. Figure 1 illustrates a 3-D composite
gel database consisting of gels from all experimental
conditions - not just gels representing particular experi-
mental conditions.

Each Rspot set may be further partitioned dynamically
into a subset of gels from the different experimental
conditions used to make up the total composite gel data-
base. Accessing each Rspot set independently lets us ask
statistical questions of each Rspot set - treating it as
multiple protein concentration distributions for that
Rspot. For example, given an Rspot set of spots, we can
compute the sample means and variances of each of the
experimental conditions and then use these values in
computing the t-statistic or other statistics to determine
differences between the experimental conditions for that
Rspot. By having all spot data available at all times in
the database, we are flexible in which subset of gels we
can use and how we compute the statistics on this data.

We should also clarify where this low-level database
method fits into the analysis scheme. Gel database anal-
ysis software makes requests to the low-level database
access method for spot data. We will be discussing the
low-level database access method - not the higher level
spot analysis.

@ VCB Verlagsgesellschaft mbH, 69451 Weinheim, 1993 0173-0835/93/1212-1341 $5.00+.25/0

1342 P. F. Lemkin, Y . Wu and K. Upton Elcctrophorerrs 1993, 14, 1341-1350

I P P / x / x I

Figure 1. Illustration of a three-dimensional composite gcl dalabase
(CGL). It consists of n gels G R ~ ~ , , C,, ..., C, from all experimental
conditions - not just gels representing a particular experimental con-
dition. A representative gel GRgei for the set of gels is selected during
database construction and is called the Rgel. Spots which are present
are marked with an 0 and those missing with an X. Experimental con-
dition 1 = {GI,, G,,, . . ., GI,), experimental condition 2 = (G21, (&,. . .,
Gzn}, etc. The set’of corresponding spots from different gels is called
an Rspot set object. Rspots 1, 2, 3 , 4, etc. are illustrated. Rspots sets
which are not present in the Rgel are called eRspot sets (e.g. Kspot
[4]). Missing spot positions are extrapolated and assigned zero density
values.

1.2 The problem

When a gel database of Rspots is extended by adding
gels or edited so spots are added, additional space may
be needed in a particular Rspot set. There are several
methods of organizing this type of data so new spots can
be accommodated. We list two here. (i) The first method
stores each spot in a separate gel spot list file, or paired
spot list file or a superfile storing all of the paired spot
lists. Adding a spot implies extending an individual file.
However, this implies visiting several files or tracing
through the pair spot lists with multiple disk seeks for
each Rspot set access. This is not very efficient for
processing large numbers of gels and large numbers of
spots. (ii) The second method, used in the original GEL-
LAB-I1 system, preallocates contiguous disk space for
each Rspot set based on a factor 2 1.0 of the number of
gels to be saved in the initial database. Each Rspot set
then consists of a list of spot nodes which is kept sorted
by a relative node pointer contained in each node.
Keeping all gel data available for statistical calculations
rather than computing average values for the different
experimental conditions of gels means that the database
can be easily repartitioned to a different subset of gels or
subset of spots from those gels without extensive
rebuilding of a sub-database.

This disk allocation strategy meant that only one disk
access was required to access the entire Rspot set. How-
ever, if the Rspot set ever grew, all Rspot sets would
have to be expanded to add space to any single Rspot
set - an inefficient expansion operation as well as waste-
ful of disk space. An Rspot set can grow if new gels are
added to an existing database or the user manually edits
in new spots to an Rspot set missed by the automatic
spot finding/quantitation software. Figure 2 illustrates
the original GELLAB-I1 database design and the pro-
blem of expanding the database if any Rspot set grows.

The new method we describe here gives us the flexibility
of method (i) but with the access efficiency of (ii). We

describe the algorithm and then give some benchmark
comparisons between the original and the new method.
The original GELLAB-I1 paged composite gel (PCG)
database data access method is described in [1,2,4] and
so will not be described here.

2 Methods

2.1 Overview of paged indexed bucket algorithm

The new database method is called the paged indexed
bucket (PIB) database. From a gel database user’s point
of view, the PIB database consists of an indexed list of
objects illustrated in Fig. 3. It uses a single-level primary
index which indexes database buckets with bucket
chaining on overflow. Korth and Silberschatz [5] have a
nice discussion of database index methods and the use
of buckets in database files. In our context, a bucket is a
contiguous region of memory (whether on the disk or in
memory) which holds one or more nodes of data. Then,
each Rspot object consists of a set of spot nodes ac-
cessed as a contiguous array belonging to that object.
This is illustrated in Figs. 4.a and b.

In the PIB design, there are two types of buckets: pri-
mary and secondary. Fixed size nodes are allocated in
buckets and are then manipulated by the gel analysis
program using this database. The gel database program
can sometimes optimize the 110 rates by requesting that
the primary bucket size be exactly that required for each
object so that multiple disk accesses are not required. If
additional nodes are ever needed to be added beyond
the capacity of a primary bucket, then additional sec-
ondary buckets are added to the end of the disk file as
overflow secondary data buckets. Secondary buckets of
an object are not contiguous on the disk but are conti-
guous in the object cache in memory. If there are few
overflows, then additional overhead would be low.

As illustrated in Fig. 3, an object set of nodes is kept in a
singly linked list of buckets in a .pib node data file. The

a) Before added X gels b) Expanded database after added K ge ls

Rspot 111

Rspot 121

Rspot [ll

Rspot C21

. . .

Rspot “1 . . .

Figure 2. Structure of the original GELLAB-I1 PCG database where
all Rspot sets are the same size (a) database of M gels containing M
spot nodes/Rspot set; (b) expanded database after adding K more gels
or if any particular Rspot [r] was increased to M + K spots. Note that
the database is contiguous on the disk and that each Rspot set is the
same size. This makes object access from the disk a simple one-step
operation.

Electrophoresis 1993, 14, 1341-1350 Object-based data structure quantitative databases 1343

object index pointing to primary buckets is saved in a
.idx file and is kept in memory during PIE operation.
The spot node data is itself saved in a .pib data file and
is cached to memory as needed. The caching mechanism
is flexible so that a single cache or multiple caches can
be used. On gel database program startup, the entire
object index is read into and kept in memory during
processing. This means that we can quickly look up the
disk addresses of the primary buckets for all objects. This
object index is the primary index and there is no sec-
ondary index. Rather, overflow or secondary buckets of
an object are chained together in the .pib file itself. So
the only way to access a secondary bucket is to have
read the previous bucket which points to it.

Object-index: EODE data file:
<dbfile>.idx file
[in memory1 [on disk1

<dbf i l e > .pib file

Object s-DD Bode-DD

2.2 The initial primary and secondary buckets

Initially, when a new object is created, we create a pri-
mary bucket (of size N,,jwith a NlJLL secondary bucket
pointer (and secondary bucket size Nsb of Oj. That is, the
first Npb nodes will be put into the primary bucket. If the
initial number of primary nodes is known, the primary
bucket can be created with this number of nodes - the
optimal allocation. So no secondary buckets are
required. (In GELLAB-11, we estimate the number of
nodes in a primary Rspot object as the number of gels in
the database). When an object is accessed, all of the
node buckets for that object are read into and assembled
into one of the PIB node caches. As the database is

(Data Dictionaries)

I
buffer or EULL

node 1

node Epb

secondary

node Psb

next secondary bucket
etc. or BULL

cachePt r

node Ipb J
buffer or BULL

node Esb
node Psb

etc. or EULL

buffer or HULL

. . .

node 1

node Ipb

node Nab

next secondary bucket
etc. or EULL

Figure 3. Schematic of PIB data struc-
tures. Each composite Rspot set object
02 has a 3-tuple (N,,, secseekptr,
cachePtr). Npb is the number of nodes in
the primary bucket. The secSerkPtr is the
pointer to the start of the primary
bucket on the disk and cucheptr is the
cache pointer if the object is in the
cache.

Electrophoresis 1993, 14, 1341-1350 1344 P. F. Lemkin, Y. Wu and K. Upton

being constructed, new bucket descriptors are added to
the object cache as required. When the object in the
cache is written back to the disk, each bucket region of
the cache is written out separately - to a different part of
the disk. At the end of each disk bucket, a two-word link
(NSb, secSrekPtr) is also written to the next secondary
bucket if it exists (illustrated in Fig. 3). Note that while
the secondary buckets for an object are scattered over
the disk, all node data in the object cache is contiguous
in the cache node buffer. Together, these links specify
the complete node data for each object set.

Normally, to access any node in an object set, all of the
nodes must be read into the object cache. The cache
holds only one object. Therefore, the size of the cache
must be at least the size of the largest object and grows
dynamically as required. When the nodes are scattered
in several buckets, this can be more time-consuming
since all buckets have to be read to access the entire
object set of nodes and the disks seeked separately to
each bucket. Although we do not operate the PIB this
way, we could optionally limit access to just the primary

Rspot [j 1 data

a) F=l Spot node 2

H Spot node n

bucket if we can ensure that the data we want resides
there. This would then allow us to do object caching in
one disk access - but at the cost of not retrieving the
entire object. The PIB algorithm can work with multiple
object caches. If memory is in short supply, it can fall
back to one cache and free the memory used in the
other caches.

Adding more nodes than the current object cache cap-
acity causes a new secondary bucket to be created in the
cache and the cache buffer to be regrown. We generally
set a secondary bucket size large enough to hold several
nodes. This prevents too much disk fragmentation if we
expect more than one additional node per object set.

The cache maintains a “dirty cache” flag which is checked
when either: (i) a new object is to be read into the
cache; or (ii) the database is to be checkpointed or
exited. If the flag is set, then the object is flushed back
out to the disk file. The dirty flag is set if the data in the
cached object changes since it was last read or is being
created.

Rspot ob j ect cache bwlf er of contiguous data

b)
Primary bucket data

1st secondary bucket data

kth secondary bucket data

<future buckets>

Figure 4. Structure of the contiguous Rspot list of spot nodes for some Rspotj. Each node is Nnode words long (16 in GELLAB-I1 packing over 30
spot features). This list occupies a contiguous memory space. The nodes are sorted within this space by the gel database program using a next-
node index in each node relative to this space. (a) Illustrates the abstract Rspot structure for n nodes. (b) Illustrates how the contiguous Rspot
object n node cache buffer is broken up into k bucket data regions (k < n) which are then gather-scattered in read/write disk operations of the
PIB node file.

Electrophoresis 1993, 14, 1341-1350 Object-based data structure quantitative databases 1345

2.3 Deleting a node

Deleting a node from an object is up to the gel database
program which uses the nodes in the object as it wants.
No semantics are imposed on the contents of a node
except that the first word of each node is non-zero if
that node is active data. We use the convention that the
word is zero if the node is inactive or deleted. In GEL-
LAB-11, deleted Rspot nodes are removed from the gel
database linked list of nodes. However, the deleted node
is still in the object bucket (and cache). The PIB sub-
system zeros the data in the node when told to delete a
node.

A deleted node can be recycled as a new node index
when the low-level PIB database gets a request for a
new node. We only need to check the first word of each
node to find a free one (i.e. previously deleted) if it
exists. So the gel database node usage adopts this
zeroed-node convention. If no deleted node is found, we
create a new node at the end of the cache buffer (adding
a bucket if required to make more node space). Deleted
objects are not reused in the PI& file. However, when a
PIB database is coalesced (to be discussed) the object
space is freed. Once a cache buffer and its bucket-list is
grown, it never shrinks since we keep reusing the cache
for caching other objects. This is more cost effective than
constantly allocating-deallocating the cache.

Object and node low-level PIB access functions do not
create objects and nodes if they do not already exist so
they must be explicitly created with other low-level PIB
functions.

2.4 PIB database handle

Opening the PIB database creates a new database handle
- a record of all pertinent information for that database.
Multiple databases can coexist in the same gel database
program - with different size nodes and buckets, etc.
and may be optimized differently for different purposes.

2.5 Multiple databases

Because the PIB database handle is allocated dynami-
cally, multiple copies can be created. Multiple database
handles are necessary for doing operations such as coa-
lescing a PIB database or in changing the size of a node
by copying and expanding/contracting nodes in the new
copy. The latter can be useful, for example, if the defini-
tion of a node is changed by adding additional spot fea-
tures (and increasing the size of a node). Then the data-
base can be copied to the new format. This is especially
important if we have a large amount of time invested in
editing an old database and do not want to have to redo
the editing just because we went to a new format.

2.6 PIB database files

There are three required PIB database files: the .idx (pri-
mary index file) and the .pib (node database), and the
.mem (a separate memo database file which is not dis-

cussed here). The .idx file must be read first in order to
access primary object buckets in the .pib file. The memo
database contains optional ASCII string data associated
with each object and has a similar dynamic allocation/
coalesce mechanism. (We actually are specifying the file
extensions here - each database has a basename. For
example for a basename fas, the three files would be:
fas.idx, fas.pib and fas.mem.) Each object can have an
optional arbitrarily large memo string associated with it.
The memo string is identified by a non-zero memo
number. In addition, objects can share the same memo
string by having the same memo number. These strings
are kept in a common .mem database file but their object
memo number index is part of the.idx database file. If a
memo is deleted from any object, the memo number is
deleted from all other objects which shared it. Further-
more, the string space is lost in the .mem memo string
file until it is compressed away with a coalesce operation.

2.7 Coalescing PIB database

After the database is constructed, it may be optimized,
i.e. coalesced, by being copied into another database file.
Multiple buckets for each object in the initial database
are coalesced into single primary buckets for those
objects of size Np,, (r) (I being the lobjectset I and Npb (r)
is part of the primary index). Since multiple databases
may reside in the same program, the secondary buckets
can be periodically optimized away using a coalesce oper-
ation. When coalescing a database, we read in the pri-
mary and secondary records for each Rspot set from the
old database and then write each Rspot set out as a
larger primary bucket in the new database with no sec-
ondary buckets.

2.8 Dynamic caches

Although the PIB algorithm can be implemented with a
single object cache, we do allow a dynamic number of
object caches to be used. This can be useful if lhere is a
need to simultaneously keep multiple objects in memory
and there is enough memory to support multiple caches.
An example of this would be when several objects need
to be repeatedly accessed such as with some clustering
algorithms. By caching all of the objects being clustered,
we help avoid disk thrashing. In this case, the gel data-
base program just accesses the objects using a different
low-level function call which puts each object into a sep-
arate cache. Finally, it notifies the PIB low-level database
manager when it is done with these objects so they can
all be flushed and the cache buffer space freed.

2.9 Byte-order and database portability

Because byte order of binary data can cause problems
with portability when reading data with computers with
different byte order, we enforce a standard byte order on
all binary data. We use the big-endian (Sparc and XDN
standard architecture) as the default byte order. The PIB
110 subsystem automatically translates big-endian to
little-endian leg. Intel to Sparc computer architectures)
as required for the .idx data on a little-endian system.

1346 P. F. Lemkin, Y. Wu and K. Upton Electrophoresis 1993, 14, 1341-1350

The PIB node data byte order can be handled either by
the gel database program or optimally by calling other
PIB access functions.

2.10 PIB data structures

In order to clarify the relationships between the different
PIB database classes: objects, buckets, cache and nodes,
we now examine parts of the PIB data structures. Table
1 shows key parts of the C language declarations for data
structures used in implementing the Paged Indexed
Bucket algorithm. Each database is referenced by a dyna-
mically allocated handle structure pibDB-t. The pibDBA
structure is composed of the PIB index, cache(s) and a
list of objects. A cache maintains a bucket list as well as
buffer space for node data. The low-level database func-

tions manipulate these structures within pibDB-t. Six
main structure types are used in this database handle
composition.

asciiDD-t Ascii data dictionary class
bucket-t Cache class for storing an Object's node bucket

cache-t Cache class for storing an Object's node data (in

pibobject-t Object index entry class
pibIndex_t Primary index limits class for the Node data

pibDB-t Paged Indexed Bucket node database handle

data class

memory) class

base class

class

The pibIndex-t class defines the .idx index file and index
sizes. Figure 5 illustrates the structure of the index file.

Table 1. Key data structures of PIB algorithma'

typedef s t r u c t --ASCIIDD--
{/* Ascii d a t a d i c t iona ry c l a s s */

char *fieldlames ; /* names of each f i e l d . Spec ia l names a re :
"$BODD" , "nKeys=" , itoa(nKeys) *
"$EODD", ' I " , 11.1

*/
/* type of each f i e l d "BYTE", "long" e t c . */
/* value of each f i e l d */

char *fieldType;
char *f ieldValue ;

> asciiDD-t;

typedef s t r u c t --BUCKET--
{ /* Cache c l a s s f o r s t o r i n g an Objec t ' s node bucket da t a */
long

fseekBucket;
nlodesInBucket,
b 0 f f s e t ;

/* (BYTE *) d i s k bucket po in t e r , -1 is undefined */
/ * list of bucket s i z e s (i n nodes) of a bucket */
/* BYTE o f f s e t s of bucket f r o m s t a r t of buf*/

> bucket - t ;

typedef s t r u c t --CACHE--

unsigned long

bucket-t

long

{/* Cache c l a s s f o r s t o r i n g an Objec t ' s node d a t a i n memory. */

*buffer ; / * po in te r t o memory cache bu f fe r i f ! m L * /

bucketLis t ; / list of [l:nBucketsUsed] buckets */

b u f f e r s i z e , /* t o t a l s i z e (i n BYTES) of cache */
o b j e c t f b r ,
maxlodesdllocated.
maxBucketsAlloc,
nBucketsUsed,
dirtyCacheFlag;

/* objec t nbr assoc ia ted with cache */
/* across a l l buckets i n cache */
/* Ir buckets a l loca t ed in cache */
/* Ir of buckets used i n t h i s Object */
/* s e t i f cache en t ry i s d i r t y and needs t o be f lushed */

. . .
) cache- t ;

typedef s t r u c t --PIBOBJECT--
{/* Object index en t ry c l a s s */

cache-t
zcachePtr; /* (dynamic) if !=O cache i d r a s soc ia t ing

caches a i t h t h e object */
/* The following d a t a i s wr i t t en t o t he . idx f i l e */
long

shor t
p r iFseekPt r ;

priBucketSize,
nlodesllsed: /* t o t a l Ir o f nodes in objec t */

/* primary DSK Buckets seek p t r s* /

/* s i z e (i n BODES) o f t he primary bucket * /

Ekctruphorrsis 1993, 14, 1341-1350 Object-based data structure quantitative databases 1347

BYTE
deletedFlag;

. . .
} pib0bject-t;

/* if ' * ' then OBJECT is deleted. */

typedef struct --PIBIBDEX--
I/* Primary index limits class for the Iode database */
asciiDD-t

asciiDD-t
**asciiDD;

**nodeAsciiDD;

/* Ascii data dictionary describing .idx file*/

/* [opt]. data dict. describing PIB node data */
char

long
idxDBf ile CZ561;

startOflodeAsciiDD, /* fseek start of node asciiDD in .idx */
st art OfBinaryDat a, /* fseek start of binary data in .idx */
nObjectsAllocated, /* sizeof pibDB->obj[] alloc - not what is
nobjects, /* X of objects in the index [l:nObjectss]
indexDirty ; /* set if ever added objects or changed */

/* pibDBfilet".idx" index file name */

. . .
) pibIndex-t;

typedef struct --PIBDB--
I/* Paged Indexed Bucket node database */
pibIndex-t

pib0bject-t

cache-t

FILE

char

index ; /*

*obj ; / *

**cache ; /*

*f pPib ; / *

pibDBfileC2561, / *
pibFileC2561; / *

nextFreeByteInFile; / *
lastcachelbr, / *
maxCaches , /*
nYordsPerEode , /*
nBytesPerIode, /*

1ockFileFlag; / *

long

nEodesPerPrirnaryBucket, /*
nBodesPerSecondaryBucket, /*

primary index state for node DB */

primary objects C1:nObjectsl index */

list of node cache[l:maxCaches] */

pibDBfilet".pib" file pointer for node

pib Base file name path (no extension)
pibDBf iletk" . pib" node file name */

next free byte to alloc in .pib file. */
last cache X allocated */
1c of caches allocated. Start at 1. */
sizeof(node)/sizeof(long) */
sizeof (node) */
initial Pri. bucket size */
default size of secondary buckets */
lock status of . idx PIB DB file */

used */
*/

file */

* /

a) To simplify these data structures for the paper, we have omitted some of the less important details.
This is denoted by ". , .", The pibDB t database handle is dynamically allocated. The primary index is
kept in memory and is read and saved from/to the .idx

The index file is used only when the database is initially
opened, check-pointed or closed. An ASCII data dic-
tionary defined by asciiDD-t at the front of the .idx
index file describes the structure of the remaining index
file so that it is portable and can reflect changes in the
number of objects, etc. The .pib node data file on the
other hand is opened when the database is opened and
remains open until the gel database closes it. When an
Rspot object is to be accessed, the low-level database
functions check the pibObject-t's cachePtr. If it is not
NULL for that object then it is in the cache, otherwise
the old contents of the cache are flushed and the new
contents loaded from the .pib file for this object. Figure
6 illustrates a typical organization of the .pib file as con-
sisting of buckets allocated as they were required. The

structure of an individual bucket is illustrated in Fig. 3
which also shows the (Nsb, secSeekPtr) pointer to the
successor bucket at the end of each bucket.

3 Results

In order to test the efficacy of the new algorithm, the
GELLAB-I1 system was built as two different versions
with all codes exactly the same except where it accessed
the low-level database handler. These two versions used
the original PCG DB method and the new PIB method.
Then different databases were constructed and various
operations performed. The first was a 12-gel leukemia
database of 1124 Rspots with an average of about 800

1348 P. F. Lemkin, Y. Wu and K. Upton Electrophoresis 1993, 14, 1341-1350

Binary index-data of variables described i n above DD

I Binary objectC13 index data I
. . .

Binary objectEd index data I
Figure 5. Structure of .idx PIB index file. The index entry for an Rspot
object points to where the primary bucket for that object is on the
disk, the primary bucket size and to the cache if the object is in the
cache. The use of ASCII data dictionaries helps make this database
more portable.

spotdgel and the second was a 52-gel serum database of
2003 Rspots with an average of about 1500 spots/gel. We
then compared file sizes, database build and search
times. These initial benchmarks are summarized in
Table 2. The new PIB database uses approximately half
the disk space of the original PCG database format.
Access times are roughly twice as long for PIB.

Coalescing the 12-gel database .pib file did not take
appreciable time - roughly double the time to do a
simple search. Coalesce time for the 52-gel data base was
also approximately double search time. This makes sense
since the coalesce operation is just a copy operation -
repeatedly reading an object from the old database and
writing it to the new one. Then after coalescing the .pib
12-gel database file, the search was slightly faster (17
versus 22 seconds). We have also observed that most pri-

Table 2. Comparison of original PCG and new PIB methods for representing 2-D gel quantitative data-
basesa)

(a) 12 gel database of 1124 Rspots with an average of about 800 spots/gel:

Original PCG method Paged-Index-Buckets (PIB)

DB size (nb) f 6.18(.pcg)

DB size (ratio)
Building DB (time)
Sequential search

(time)
EXTRAPOLATE (adds
missing spots to
existing DB, but
before COALESCE)

SEARCH (time)
(sorts existing
database)

COALESCE DB (time)
SEARCH (time 1
(After

(b) 52

DB size

DB size

1 .o

00 : 05 COO : 041
13 : 48 cot3 : 571

00 : 32 100 : 311

00 : 04 COO : 031

~ ~ ~~

0.04(.idx) + 1.63(.pib) +
1.34(8K .sdd) or 2.27(16K .sdd)
0.48(8K .sdd) or 0.64(16K .sdd)
15 : 38 C07 : 401
00 : 09 COO : 081

01:51 [00:511

00 : 22 COO : 171

00 : 58 COO : 181
00 : 17 COO : 161

COALESCE) I

gel database of 2003 Rspots with an average of about 1500 spots/gel:

(Hb)

(ratio)
Building DB (time)
Sequential search

(time)
EXTRAPOLATE (adds
missing spots to
existing DB, but
before COALESCE)

SEARCH (time)

database)
(sorts existing

COALESCE DB (time)

Original PCC method Paged-Index-Buckets (PIE)

14.92(.pcg) O.OG(.idx) + 6.81(.pib) +

1 .o 0.61
1 :OO: 11 CO: 57: 561

2.26(16K .sdd)

2 : 23 :02 c1: 30: 581
00:18 [OO:l6] 00 : 21 coo : 201

03:16 C03:lll 05 : 58 C04 : 421

-- 01 : 02 COO : 581

I -- 02:11 C00:501

a) Rough benchmark times are represented as run-time [cpu-time] in minutes:seconds. In part (a) a 12
gel leukemia gel database with roughly 800 spots/gel was used in these tests [Thanks to Dr. Eric
Lester for use of this data]. In part (b) a 52 gel FAS serum gel database with roughly 1500 spotslgel
was used in these tests [Thanks to Dr. James Myrick for use of this data]. The FAS database did not
have any GELLAB-I1 eRspots so all gels fit into the primary bucket. The PIB versions were built to
hold up to either 8,000 or 16,000 Rspots while the PCG version could hold up to 8,000 Rspots.

Electr-ophoresis 1993, 14, 1341-1350 Object-based data structure quantitative databases 1349

[object #, bucket #I

==> Bucket node data for [l, 1 1 , CWsb,sscFseekPtrl j

primary buckets . . .

==> Bucket node data for [n, 11, [llsb,secFseebPtrl +
t o secondary
buckets

-> Bucket node data for [l, 21, Clsb,secFseeLPtrl

. . .
-> Bucket node data for [n, 21, [lsb,secFseekPtrl +

-> Bucket node data for E l . kll, C0,UULLl I
-> Bucket node data for En. knl, [O,IULLI

Figure 6. Structure of .pib PIB mode data file. Object primary buckets
are generally clustered in the front of the file while secondary buckets
and new primary object buckets are inserted toward the end of the
file. Pointers from the primary index are denoted by => while sec-
ondary pointers are denoted by ->.

mary buckets are at the front of the .pib database file.
This is consistent with the ways the data is assembled in
the PIB database since the initial Rspot objects are all
defined by spots contained in the reference gel. With the
larger 52-gel database, the ratios of the disk space and
database processing times were similar to those of the
smaller database.

done?” We would suggest that it would be most produc-
tive just after a database was built and possibly after
major editing. By coalescing immediately after the com-
posite gel database is constructed, the database is opti-
mized before doing searches or additional analysis.
When editing, we add (and delete) spots in individual
gels, possibly changing the size of some Rspot objects.
Unless a massive editing effort is performed, editing will
probably not make much difference in overall PIE data-
base efficiency. Alternatively, by looking at the statistics
of the average number of secondary bucketslprimary
buckets in the cache usage, we could estimate when to
coalesce the database and possibly even invoke it auto-
matically. The PIB structure allows extending an indivi-
dual object without any penalty on other objects. If more
nodes are needed than will fit in the last current bucket
of an object, it simply adds another bucket. So the worst
case is that the object gets additional secondary buckets.
If this happened to many objects and performance
degrades, the PIB database can always be coalesced.

4.2 ASCII data dictionaries for portability

The index database has two ASCII data dictionaries. The
first is for the index .idx file itself and describes its size
and contents. This makes the database more portable as
other programs can read and decode the index data
structures. The second ASCII data dictionary describes
the structure of a node used as the basic building block
of the .pib file. This is also useful if the structure of a
node changes with the version of the gel database soft-
ware since it could still read an old database and remap
the data to the format of the new node structure.

4.3 Efficiency of PIB versus standard relational
databases

4 Discussion

As expected, we see from Table 2 that the efficiency (as
measured by access time) of the PIB database implemen-
tation of a 2-D gel database is somewhat less than for
the original PCG DB method. This is because of the
existence of secondary buckets for some of the objects.
However, the PIB database file takes less space - and
the time trade-off is not severe. Because the ratios of
disk space and database processing times are similar for
the large and small databases, it would seem that the
PIB algorithm would scale linearly. By further bench-
marking and code optimization, we feel that the PIB per-
formance can be optimized to nearly that of the more
effcient GELLAB-I1 PCG algorithm. The main point,
however, is that the performance is acceptable and we
get the benefit of an easily extensible object database.
Additional benchmarking should be done to get a more
accurate estimate of the differences between the two
methods.

4.1 Coalesce strategies

After expanding a PIB database, if new gels were added,
it may be useful to coalesce it to improve efficiency. The
question arises “at what point should coalescing be

The B’ balanced tree database structure [5,61 is an
optimal data structure for many types of data. It keeps
the tree depth and seach times to a minimum. However,
it requires at least two disk accesses and probably more
as the number of records (Rspot nodes) exceeds the size
of the B+-tree internal node size. Object data is therefore
still not as optimally clustered as with the PIB method
when coalescing is used, which can reduce object access
to one disk access.

4.4 Efficiency of PIB versus standard relational
databases

Since the PIB methodology clusters related spot node
entities in Rspot set objects for efficient retrieval, it
would appear to be much more efficient than if imple-
mented using most relational databases (RDB). A
standard RDB could store each spot node in a table
organized by gel. Then to access all of the spots in an
Rspot set, the RDB system must access each of the gel
tables to get each record and then assemble them (i.e.
“join”) in a new table. Alternatively, a table could be
organized so a record is an Rspot set with each number
of fields being separate gels. However, this is awkward
since it may be expensive to extend tables to add new

1350 P. F. Lernkin, Y. Wu and K Upton Electrophoresis 1993, 14, 1341-1350

gel spot nodes. Unused table entries would also be
wasteful of disk space.

However, if the RDB implements record clustering, then
its efficiency could be optimized to be similar to that of
PIB. By record clustering, we mean the clustering of the
node data - not just the clustering of indices to the data.
Index clustering still does not give the efficiency we
require. One always wants to avoid multiple disk
accesses for reading and writing an object which is
clearly less efficient. Elmarsi and Navathe [6] describe a
clustering index method with separate fixed-sized blocks
(similar to fixed-size buckets) for each group of records
belonging to the same cluster (i.e. object). PIB is similar
to this concept except that PIB buckets need not be of a
fixed size. Variable bucket size can then be used in opti-
mizing disk usage when a PIB database is coalesced.

The PIB object-based database design is not optimal for
general RDB problems because there is no secondary
index (although it could be added). However, it would
be useful for object-based databases where objects con-
tain related subobjects and when objects can grow arbi-
trarily krge at any time. Hurson et al. [7] analyze dif-
ferent problem domains of database management sys-
tems and suggest a model for predicting which domains
will work better with the relational model and which
with the object-oriented model. They indicate that the
relational model, while simple and powerful, works best
with data where “relations must be at least in first
normal form, which inhibits the direct representation of
multivalued or set-valued attributes”. Although objects
can be mapped to first normal form, they suggest that
better performance can be achieved using object-
buffering and object-caching - both of which are used in
the PIB design.

4.5 Future improvements

The Rspot set data in an object could be reorganized for
faster I/O. By having the gel database program physically
reorganize the node data in the primary and secondary

buckets so all nodes of interest are in the primary
bucket, it would then be possible to read only the pri-
mary bucket for that object. The high-level database pro-
gram would then instruct the low-level PIB database
functions to read only the primary bucket for an object.
Yet, the full object data is available when needed using
the standard object retrieval method. Low-level PIB
functions exist to read/write only the primary bucket,
but are not currently used in the GELLAB-I1 database
code.

It is not currently possible to read an arbitrary bucket
from the middle of the bucket list because only the pri-
mary bucket is accessible from the index for each object.
Currently, all buckets in the list for an object are read
into the cache. If a specific node were desired, the PIR
algorithm might be extended to read only as much as it
needs in order to reach that data. Using a secondary
index might help, but that could add a great deal of
memory overhead for marginal gain in an object-based
system. Overall the PIB object-based design improves
the overall performance of accessing 2-D gel quantitative
data without major overhead and allows smaller compos-
ite gel database files to be used. Although this clustering
scheme may be available in some expensive relational
database systems, the concept is simple enough to imple-
ment for small systems which can not justify this cost.

Received June 2, 1993

5 References

[I] Lipkin, L. E. and Lemkin, P. F., Clin. Chem. 1980, 26, 1403-1413.
[2] Lemkin, P. F. and Lester, E. P., Electrophoresis 1989, 10, 122-140.
[3] Lemkin, P. F., in: Endler T. and Hanash, S. (Eds.) Proceedrngs of

[4] Lemkin, P. and Lipkin, L., Comp. Biomed. Res. 1981, 14, 407-446.
[5] Korth, H. F. and Silberschatz, A,, Fundamentals of Database Sys-

tems. The Benjamin and Cummings Pub. New York 1989, pp. 802.
[6] Elmasri, R. and Navathe, S. B. Database System Concrpts, McGraw-

Hill, New York, NY 1991, pp. 694.
[7] Hurson, A. R., Pakzod, S. H. and Cheng, J.-B., IEEE Computer

2-D Electrophoresis. VCH Weinheim 1989, pp. 52-57.

1993, 26, 48-60.

